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Microscopic models for heavy-fermion materials often assume a local, i.e., momentum-independent, hybrid-
ization between the conduction band and the local-moment f electrons. Motivated by recent experiments, we
consider situations where this neglect of momentum dependence is inappropriate, namely, when the hybrid-
ization function has nodes in momentum space. We explore the thermodynamic and optical properties of the
highly anisotropic heavy Fermi liquid, resulting from Kondo screening in a higher angular-momentum channel.
The dichotomy in momentum space has interesting consequences: while, e.g., the low-temperature specific heat
is dominated by heavy quasiparticles, the electrical conductivity at intermediate temperatures is carried by
unhybridized light electrons. We then discuss aspects of the competition between Kondo effect and ordering
phenomena induced by intermoment exchange. We propose that the strong momentum-space anisotropy plays
a vital role in selecting competing phases. Explicit results are obtained for the interplay of unconventional
hybridization with unconventional, magnetically mediated, superconductivity, utilizing variants of large-N
mean-field theory. We make connections to recent experiments on CeCoIn5 and other heavy-fermion materials.
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I. INTRODUCTION

Recent years have seen a revival of research in heavy-
fermion metals, due to the wealth of fascinating phenomena
which can be found in these materials.1–5 These include non-
trivial charge and spin order, unconventional superconductiv-
ity, non-Fermi-liquid behavior, as well as quantum criticality
beyond the Landau–Ginzburg–Wilson paradigm. The stan-
dard microscopic description of heavy-fermion systems is
based on versions of the Anderson or Kondo lattice models,
consisting of conduction �c� electrons and local moments on
a regular lattice, with a spatially local hybridization or
Kondo coupling between c electrons and local moments. The
formation of a heavy Fermi liquid in such a model originates
from the screening of the local moments at low temperatures
through a lattice generalization of the Kondo effect—this is
reasonably well understood, e.g., using slave-particle or dy-
namical mean-field approaches.

For some materials, recent experiments6,7 indicate that the
assumption of a local �i.e., momentum-independent� hybrid-
ization is insufficient for a full understanding of the data. For
example, optical-conductivity measurements7 in CeMIn5
�M =Co,Ir,Rh� do not show the conventional, frequently ob-
served hybridization gap8–12 but instead have been inter-
preted in terms of a distribution of gap values. Microscopi-
cally, a momentum dependence in the hybridization is not
surprising, as the local-moment orbitals are usually of f type
and may hybridize with several conduction-electron orbitals.
While in certain cases this momentum dependence does not
lead to significant changes in observable properties �as com-
pared to a local hybridization�, the physics can be qualita-
tively different if the hybridization has zeros �i.e., nodes� in
momentum space. In analogy with unconventional supercon-
ductors, having a pair wave function with nonzero internal
angular momentum, we may call heavy-fermion materials
“unconventional” Fermi liquids if the Kondo electron-hole
pairs have nonzero angular momentum. Such unconventional

heavy Fermi liquids, formed below the coherence tempera-
ture in the described setting, will have, e.g., quasiparticles
with strong momentum-space anisotropy, to be discussed in
more detail in this paper. �It is worth pointing out that the
existence of hybridization nodes does not imply that parts of
the local moments remain unscreened.�

Importantly, unconventional hybridization will influence
the entire complex phase diagram of heavy-fermion com-
pounds, where the lattice Kondo effect and various types of
long-range order compete for the same electrons. Clearly, a
strong momentum dependence of the hybridization may fa-
vor or disfavor certain ordering phenomena. For instance, a
dichotomy in momentum space arising from anisotropic
Kondo physics may determine which �unconventional� su-
perconducting phase is realized at lowest temperatures.

On the theory side, hybridization with higher angular mo-
mentum has been discussed in a few papers only. References
13 and 14 studied the case of a half-filled conduction where
a Kondo semimetal replaces the conventional Kondo
insulator—this physics is likely relevant to CeNiSn and
CeRhSb.13 Recently, Ghaemi and Senthil15 examined aspects
on “higher angular-momentum Kondo liquids,” starting from
a Kondo lattice model with nonlocal Kondo coupling. Some
of their results in the Fermi-liquid regime are related to ours
below, and we shall comment on similarities and differences.
Let us note that differentiation of electronic properties in
momentum space is a common theme in correlated electron
systems. For instance, in the copper oxide high-temperature
superconductors, quasiparticle properties are known to vary
strongly along the Fermi surface.16

The purpose of this paper is a detailed investigation of
heavy-fermion metals featuring hybridization functions with
momentum-space nodes. In the first part, we study important
Fermi-liquid properties including Fermi surface, effective
mass, specific heat, and optical conductivity. We also discuss
the temperature-dependent electrical resistivity. The focus of
the second part is on ordering phenomena competing with
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Kondo screening. Here, we concentrate on magnetically me-
diated superconductivity. Assuming a direct exchange inter-
action between local moments, we discuss mean-field phase
diagrams focusing on the interplay of hybridization symme-
try and pairing symmetry. Most of the concrete calculations
are done using the slave-boson mean-field approximation on
two-dimensional lattices, but most of our ideas apply more
generally, including to situations where the hybridization
does not have nodes, but otherwise varies strongly in mo-
mentum space.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the microscopic model to be employed;
its mean-field treatment is the subject of Sec. III. We shall
point out the relation between Kondo and Anderson lattice
models with nonlocal coupling between c and f electrons.
Section IV is devoted to properties in the Fermi-liquid re-
gime, comparing local with nonlocal �unconventional� hy-
bridization. In particular, the optical conductivity will be cal-
culated and discussed in relation to experiments on the
CeMIn5 compounds.7 In Sec. V, we shall touch upon the
low-temperature physics beyond the slave-boson approxima-
tion. Section VI discusses qualitative properties of the elec-
trical resistivity, in particular, the perturbatively accessible
temperature regime above the single-impurity Kondo tem-
perature TK. The competition of Kondo screening and super-
conducting pairing is the subject of Sec. VII. Two regimes
will be distinguished, depending on whether the transition
temperature Tc is comparable to or smaller than the Fermi-
liquid coherence temperature Tcoh. An outlook will conclude
the paper.

II. MODEL

In this paper, we shall restrict our considerations to two-
band models of heavy-electron materials, with simple tight-
binding hopping of electrons. We shall generalize the Ander-
son and Kondo lattice models to the case of a nonlocal
coupling between the conduction �c� and local �f� electrons,
and discuss the relation between two models.

The Hamiltonian of the Anderson lattice model is given
by

HALM = �
k�

��k − ��ck�
† ck� + �

k�

�� f − ��fk�
† fk�

+ �
k�

Vk�fk�
† ck� + ck�

† fk�� + U�
i

nf ,i↑nf ,i↓, �1�

where ck�
† �fk�

† � creates a conduction �f� electron with mo-
mentum k, spin �, and energy �k �� f�. f and c electrons are
hybridized via the momentum-dependent hybridization Vk.
Finally, U is the on-site Coulomb repulsion of f electrons.
The chemical potential � influences the band fillings nc and
nf of the c and f electrons, respectively. �Note that HALM has
the full translational invariance of the underlying lattice.�

While a full microscopic treatment of the f-electron lat-
tice would require to consider the low-energy Kramers dou-
blet state, e.g., of one f electron in an f1 configuration of Ce
in the presence of spin-orbit and crystal-field interactions, we
shall proceed with the simplified model �Eq. �1��. Hence, we

shall take the momentum dependence of Vk as a phenomeno-
logical input, noting that it is dictated by the lattice structure
and the overlap of c and f orbitals. �In principle, the momen-
tum dependence of Vk can be further renormalized by inter-
action effects, see Sec. V below.� The directional dependence
of Vk as function of k /k may be expanded into spherical
harmonics. Conventionally, one neglects all nonzero angular-
momentum components and assumes a local hybridization
Vk=V. This paper is concerned with situations where the
zero angular-momentum component is small or vanishes, and
hence the momentum dependence of Vk can no longer be
ignored �because, e.g., Vk displays nodes in momentum
space�. It is convenient to decompose Vk=V�k, where the
form factor �k is dimensionless and normalized to, e.g.,
�k�k

2 =N, where N is the number of lattice sites. It is obvi-
ous that the thermodynamics as well as most other observ-
ables of the system will depend on �Vk�2 only; exceptions will
be noted in the course of the paper. The f level is assumed to
be nondispersive; this approximation is relaxed in Sec. VII.

In the Kondo limit, i.e., V→�, U→�, � f →−� with
V2 /� f finite, charge fluctuations are frozen. A Schrieffer–
Wolff transformation,5 which projects out empty and doubly
occupied states of the f levels, leads to a Kondo lattice
model,

HKLM = �
k�

�̄kck�
† ck� + �

kk�i

2Jkk�e
−i�k�−k�RiSi · sk,k�

HJ

,

�2�

where skk�=����ck�
† ����ck��� /2 and �̄k=�k−�. In the

Kondo limit, nf is fixed to unity, and Si is the local moment
at site i formed out of the f electrons. �An additional poten-
tial scattering term arising from the Schrieffer–Wolff trans-
formation will be neglected.� To leading order, the Kondo
coupling is

Jkk� = 2VkVk�� 1

U + � f
+

1

− � f
� = J0�k�k�, �3�

where J0=V2� 1
U+� f

+ 1
−� f

�. In real space, the Kondo interaction
HJ takes the form

HJ = 2J0�
imn

�n−i�m−iSi · smn, �4�

where �n−i denotes the Fourier transform of �k depending on
the distance �Rn−Ri� and smn=����cm�

† ����cn�� /2 is a non-
local conduction-electron spin density.

Importantly, for each impurity Si, Eq. �4� describes a
single-channel Kondo model, with the exchange “symmetry”
determined by the hybridization symmetry of the underlying
Anderson model. In contrast, Ghaemi and Senthil15 start out
from a Kondo lattice model, where each local moment is
exchange coupled to neighboring conduction-electron sites
as follows:

HJ� = 2�
im

JimSi · smm. �5�

This is a multichannel Kondo model, where the different
screening channels correspond to different linear combina-
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tions of the conduction electrons at the surrounding sites m.
In such a model, the screening channels are of different
strengths, and the strongest will dominate the low-
temperature physics. The authors of Ref. 15 argue that, de-
pending on microscopics �i.e., lattice and band structure
properties�, a higher-angular-momentum channel �e.g., d
wave� can dominate over the conventional symmetric �s
wave� channel. The general relation between Anderson and
Kondo models with nonlocal coupling has been discussed,
e.g., in Ref. 17. There, it was argued that, in an Anderson
model, the coupling to a correlated conduction band opens
new screening channels, and the effective model will be a
multichannel Kondo model because the charge fluctuations
in the band �accompanying the nonlocal hopping� are sup-
pressed by conduction-electron correlations.

For our purpose, we note that the two Kondo lattice mod-
els with HJ and HJ� �with one screening channel dominating�
become equivalent in the slave-boson mean-field �saddle-
point� analysis employed below because the different screen-
ing channels correspond to different saddle points. Therefore,
our mean-field results derived for the single-channel models
�Eqs. �1� and �2�� can be directly compared with the ones for
the multichannel Kondo model in Ref. 15.

III. MEAN-FIELD APPROXIMATION

To obtain quantitative results, we shall employ the stan-
dard slave-boson mean-field approximation for the Kondo
and Anderson lattice models �the latter with infinite U�. In
the following, we briefly summarize the corresponding
formalism.5,18,19 Note that in all cases, we restrict our atten-
tion to states with spatial translational invariance.

We start with the Anderson model. For infinite on-site
repulsion, the three states of each f orbital can be represented

by auxiliary fermions f̄ i� and spinless bosons ri, such that the

physical f electrons f i�=ri
† f̄ i�, together with the constraint

�
�

f̄ i�
† f̄ i� + ri

†ri = 1. �6�

At the saddle point, the slave bosons condense, 	ri
=r, which

implies a rigid hybridization between the c and the f̄ bands.
The mean-field Hamiltonian of the Anderson lattice model
reads

HALM,MF = �
k�

�kck�
† ck� + �

k�

� f f̄k�
† f̄k�

+ �
k�

Vkr� f̄k�
† ck� + ck�

† f̄k��

− ���
k�

f̄k�
† f̄k� + N�r2 − 1��

− ���
k�

ck�
† ck� − Nnc� , �7�

where � is the Lagrange multiplier implementing the con-
straint �Eq. �6�� at the mean-field level, and the effect of the

chemical potential � on the f̄ electrons has been absorbed in
�. The three mean-field parameters r, �, and � are obtained

from minimizing the free energy, leading to the self-
consistency equations

�
k�

Vk	 f̄k�
† ck� + H.c.
 = 2N�r , �8a�

�
k�

	 f̄k�
† f̄k�
 = N�1 − r2� , �8b�

�
k�

	ck�
† ck�
 = Nnc. �8c�

The expectation values can be easily expressed in terms of
the Green’s function of the diagonalized mean-field Hamil-
tonian; for details, see Appendix A.

For the mean-field analysis of the Kondo lattice model,
one represents the local moments Si by auxiliary fermions

f̃ i�, Si=
1
2���� f̃ i�

† ���� f̃ i��, with the constraint

�
�

f̃ i�
† f̃ i� = 1. �9�

The Kondo interaction takes the form

HJ = − J0 �
imn���

�n−i�m−i f̃ i�
† cn�cm��

† f̃ i��, �10�

where additional bilinear terms have been dropped, as they
can be absorbed in chemical potentials. The Kondo interac-
tion term HJ can be decoupled using auxiliary fields bi con-

jugate to �−J0�n��n−i f̃ i�
† cn��, i.e., bi reflects the hybridization

between the f̃ and c bands at site i. At the saddle point, the bi
condense, and translational invariance dictates bi=b. The
Kondo lattice mean-field Hamiltonian is

HKLM,MF = �
k�

�kck�
† ck� + b�

k�

�k�ck�
† f̃k� + H.c.� + Nb2

J0

− �0��
k�

f̃k�
† f̃k� − N� − ���

k�

ck�
† ck� − Nnc� .

�11�

As before, the three parameters b, �0, and � are determined
by self-consistency equations, which now read

�
k�

�k	 f̃k�
† ck� + H.c.
 = − N2b

J0

, �12a�

�
k�

	 f̃k�
† f̃k�
 = N , �12b�

�
k�

	ck�
† ck�
 = Nnc. �12c�

These mean-field equations are equivalent to the ones of the
Anderson lattice model �Eq. �8�� if the Kondo limit is taken
there; for details, see Appendix B.

We note that mean-field Hamiltonians �Eqs. �7� and �11��
represent the N=� saddle-point solutions of certain SU�N�
Anderson and Kondo lattice models. In this mean-field pic-
ture, both the Anderson and Kondo lattice models are
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mapped onto two-band systems of noninteracting fermions
with a self-consistently determined renormalized hybridiza-
tion between the bands. At high temperature, the slave-boson
condensation amplitude vanishes �leading to two decoupled
bands�, whereas the condensation amplitude is finite below
the single-impurity Kondo temperature TK. In the Kondo lat-
tice model, TK is given by

2

J0
=

1

N�
k

�k
2

�̄k
tanh

�̄k

2TK
, �13�

with �̄k=�k−�. The neglect of fluctuations in the mean-field
approach causes an artificial finite-temperature transition at
TK, which can, in principle, be cured by including the cou-
pling to a U�1� gauge field, see Sec. V.

The effective two-band picture is appropriate to describe
the low-temperature Fermi-liquid regime, i.e., the quasiparti-
cle physics for temperatures below the Fermi-liquid coher-
ence temperature Tcoh. An approximation for Tcoh can be ex-
tracted from the T=0 slave-boson solution. For the Kondo
lattice model, one obtains Tcoh=b2 /D, where D is the
bandwidth.19 �Also, �0�Tcoh.� The Fermi surface resulting
from the slave-boson approximation fulfills Luttinger’s theo-
rem: The momentum-space volume enclosed by the Fermi
surface is proportional to the total number of electrons ntot
=nc+nf, where nf =1 in the Kondo limit. At small nonzero
temperature T, the mean-field parameters acquire quadratic T
corrections characteristic of a Fermi liquid, e.g., �b�T�
−b0� /b0�−T2 /TK

2 , where b0=b�T=0�.
The simple two-band picture of the slave-boson approach

has been confirmed, e.g., using the dynamical mean-field
theory20 �DMFT� approach to the Anderson lattice model,
which fully includes local correlations and inelastic pro-
cesses. The DMFT results21 nicely show the formation of a
coherent heavy band crossing the Fermi level at low tem-
peratures, rather well separated from the second band.

IV. LOW-TEMPERATURE PROPERTIES OF THE FERMI-
LIQUID STATE

This section will discuss the properties of the heavy-
Fermi-liquid state in a heavy-fermion system with unconven-
tional hybridization. Effects of intermoment exchange and
possible ordered phases will be ignored; we will come back
to these issues in Sec. VII. Quantitative results will be ob-
tained by solving the slave-boson mean-field equations for
different model parameters, but the qualitative aspects will
be of general validity unless otherwise noted.

We restrict ourselves to two-dimensional systems on a
square lattice. For the c electrons, a tight-binding dispersion
will be assumed,

�k = − 2t�cos kx + cos ky� . �14�

Results will be shown for hybridization functions of the form
Vk=V0�k with

�k = 1 s wave

cos kx + cos ky extended s wave

cos kx − cos ky dx2−y2 wave.
� �15�

The dx2−y2-wave and the extended s-wave case correspond to
different linear combinations of hybridization between an f
site and its nearest-neighbor c sites �also discussed by
Ghaemi and Senthil15�, while the s-wave case with local hy-
bridization is shown for comparison.

In addition, we will also consider a lattice appropriate to
model the CeIn planes of the CeMIn5 materials �M =Ir, Rh,
or Co�. Those crystallize in a HoCoGa5-type tetragonal
structure,22,23 where the Ce and the in-plane In ions are lo-
cated on two interpenetrating square lattices. Thus, we as-
sume a c-electron dispersion as in Eq. �14� and hybridization
functions of the form

�k = 2 cos
kx

2
cos

ky

2
extended S wave

2 sin
kx

2
sin

ky

2
Dxy wave. � �16�

Hybridization functions �k which formally break inver-
sion symmetry, i.e., have odd angular momentum l, are pos-
sible as well. Observables are governed by Vk

2 and display
inversion symmetry; hence, there is little qualitative differ-
ence between even and odd angular-momentum hybridiza-
tion �apart from the location of the hybridization nodes�. Ex-
ceptions are transport anisotropies for l=1, briefly discussed
in Sec. IV E.

A. Band structure and Fermi surface

To simplify the discussion, we shall work in the Kondo
limit. The eigenvalues of the mean-field Hamiltonian �Eq.
�11��, representing the effective bands of the heavy Fermi
liquid, are given by

z1,2k =
1

2
�− �0 + �̄k � ���0 + �̄k�2 + 4b2�k

2� . �17�

This band structure is illustrated in Fig. 1. Along certain
“nodal” lines in momentum space, the hybridization van-

ishes, and the two bare bands of the c and f̃ particles cross
�Fig. 1�a��; for dx2−y2 symmetry, this applies to kx= �ky. Oth-
erwise, the hybridization causes a band repulsion �Fig. 1�b��,
which is maximum in the “antinodal” direction. As the bare f̃
band is nondispersive, the two bands z1,2k do not overlap,
and consequently only one band crosses the Fermi level. For
less than half filling, nc	1, the Fermi surface is thus deter-
mined by z2k=0.

Figure 1 also shows the momentum distribution function
of the c electrons, nk= 	ck

†ck
. It shows a jump at the Fermi
wave vector kF, the jump height given by the quasiparticle
weight Z, see below. As typical for heavy-fermion systems,
nk also shows a rounded step at the “small” Fermi surface of
the original c electrons, i.e., the Fermi surface in the absence
of a hybridization �or at temperatures T
Tcoh�.

Sample results from a full numerical solution of the
mean-field equations �Eq. �12�� are shown in Figs. 2–5 be-
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low. Figure 2 displays two-dimensional �2D� Fermi surfaces
for the hybridization functions of Eq. �15�, with parameters
chosen such that the specific-heat coefficient is identical in
the four cases, see below. For dx2−y2-wave hybridization
�Figs. 2�c� and 2�d��, one clearly observes a small Fermi
momentum kF along the nodal directions, while kF is “large”
along the antinodal direction. Note that the function kF���,
where � is the angle parametrizing the k-space direction, can
be multivalued due to the momentum dependence of Vk.
Analyzing the equation z2k=0, one finds that this generically
happens for small band filling nc �Fig. 2�d��. In the case of
extended s-wave hybridization �Fig. 2�b��, two Fermi sheets
emerge, as the lower band crosses the Fermi level twice.

For the hybridizations of Eq. �16�, arising from two inter-
penetrating square lattices of c and f electrons, sample Fermi
surfaces are shown in Fig. 3. In the d-wave case �Fig. 3�b��,
the nodal lines are simply rotated by 45° with respect to Figs.
2�c� and 2�d�.

B. Thermodynamic properties

The leading low-temperature thermodynamics can be di-
rectly obtained from the effective two-band description of

the slave-boson approximation.24 For noninteracting fermi-
ons, the Sommerfeld coefficient, �=CV /T, of the specific
heat is related to the density of states �per spin� at the Fermi
level, N0=N�=0�, through �= 2�2

3 N0. In standard isotropic
Fermi-liquid theory, the effective mass m* is defined through
the slope of the dispersion at the Fermi level, vF=kF /m*,
where vF and kF are Fermi velocity and Fermi momentum,
respectively. The density of states is N0=m*kF

d−2 /Cd in d di-
mensions, where C2=2� and C3=2�2.

In anisotropic systems, a suitable definition for a
�direction-dependent� effective mass is

1

m*�k�
=

1

k
� ��k

�k
�

FS
�18�

where �k is the quasiparticle energy of the band crossing the
Fermi surface �FS� and k= �k�. Then, the density of states is
given by

N0 = �
FS

dd−1k

�2��d

m*�k�
k

. �19�

Note that Ref. 15 defined a quantity m* via the second
�instead of the first� derivative of quasiparticle energies,
which, in general, plays only a subleading role in thermody-
namics.
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FIG. 1. �Color online� Dispersion relation of the two effective
bands, z1,2k �Eq. �17��, and the corresponding momentum distribu-
tion function nk, for a dx2−y2-wave hybridization on a 2D square
lattice, �a� along the momentum-space diagonal and �b� along a
direction which encloses the angle 0.195� with the kx axis. The
parameters of the Kondo lattice model are J0 / t=2.0 and nc=0.4.

FIG. 2. Fermi surfaces for �a� s-wave, �b� extended s-wave, and ��c� and �d�� dx2−y2-wave hybridization. The band filling is nc=0.3 in
panels �a�–�c�, whereas nc=0.1 in panel �d�; the Kondo coupling is chosen such that the specific-heat coefficient is identical in all four cases:
�a� J0 / t=1.0 ��0=−0.025, �=−2.47, b=0.281�, �b� J0 / t=0.89 ��0=−0.0067, �=−2.3, b=0.281�, �c� J0 / t=0.97 ��0=−0.0061, �=−2.46,
b=0.173�, and �d� J0 / t=1.957 ��0=−0.0385, �=−3.698, b=0.466�.

FIG. 3. Fermi surfaces using the hybridization functions �Eq.
�16�� for interpenetrating c and f square lattices. �a� Extended s
wave with J0 / t=0.46 ��0 / t=−0.011, � / t=−2.38, b / t=0.187� and
�b� dxy-wave with J0 / t=1.975� ��0 / t=−0.001, � / t=−2.34, b / t
=0.138�. In both cases, nc=0.3, and the parameters are chosen such
that the � coefficient is the same as for the data in Fig. 2.
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In our two-band system, �k=z2k for nc	1. In d=2, some
factors of k drop out, such that

N0 =
m*

2�
=

1

4�2�
FS

dAk

��kz2k�
, �20�

where m* is the effective mass as extracted from specific-
heat measurements �i.e., the effective mass of an isotropic
Fermi liquid with the same �� and dAk is the Fermi-surface
element. Under the condition that the Fermi surface can be
parametrized in the way k=kF���, this integral can be rewrit-
ten as

N0 =
m*

2�
=

1

4�2 � d�
��kF����2 + �kF�����2

��kz2k�k=kF���
. �21�

Sample results for the quasiparticle velocity, ��kz2k�FS, as
a function of the Fermi-surface angle �i.e., the direction� are
shown in Fig. 4 for the various hybridization cases intro-
duced in Eq. �15�. The microscopic parameters are chosen
such that all four cases lead to the same value of the density
of states N0 and thus the same specific-heat coefficient. The
corresponding total effective mass is around 125 times the
bare c-electron mass. For dx2−y2-wave hybridization, the ve-
locity and, therefore, also the inverse effective mass has a
maximum at the nodal line ��=� /4�—here m*�k� corre-
sponds to approximately the bare c-electron mass. Away
from the nodal line, the velocity rapidly decreases. In con-
trast, for both s-wave-like hybridizations, the velocity is ap-
proximately constant �and small� along the Fermi surface.

The electronic quasiparticle weight Z�k� can be easily ex-
tracted as well. Z measures the overlap between the physical
c electron and the low-energy quasiparticle at the Fermi sur-
face. In the mean-field approach of two hybridized bands, Z
is given by15

Z�k� =
�z1k − �̄k�2

�z1k − �̄k�2 + b2�k
2 . �22�

Results for Z are displayed in Fig. 5. It is unity along the
nodal lines of the hybridization but becomes very small away
from it—the latter is the typical heavy-fermion situation. For
the s-wave-like hybridizations, Z turns out to be independent
of the momentum direction; in the s-wave case, this follows
from Vk=const, whereas in the extended s-wave case, this
follows from the coincidence of the momentum dependence
of the hybridization Vk and the c-electron dispersion �k.

At this point, let us comment on a few important issues.
First, even in the presence of hybridization nodes, all local
moments of the Anderson or Kondo lattice are fully screened
in the low-temperature limit. This is obvious from the slave-
boson solution which clearly describes a Fermi liquid, but
also beyond slave bosons we see no reason for a �partial�
breakdown of Kondo screening. For instance, in DMFT,
complete screening will occur once the effective bath density
of states at the Fermi level is finite �which is the case here�.
Physically, the local moments are entities in real space,
whereas the hybridization nodes are defined in momentum
space. Second, as the nodes cover only a set of momenta of
zero measure, hybridization nodes do not easily lead to the
so-called two-fluid behavior �i.e., a heavy Fermi liquid coex-
isting with local moments�, which has been advocated on
phenomenological grounds.25 We note that these statements
also hold if both quasiparticle bands �c-like and f-like� cross
the Fermi level. Although one may speculate about the exis-
tence of gapless spinons at the f Fermi points where the
hybridization vanishes,15 these would again cover only a set
of momenta of zero measure.

C. Influence of a magnetic field

Let us briefly discuss the effects of a weak external field
applied to the heavy Fermi liquid. In general, a Zeeman field

FIG. 4. The quasiparticle velocity at the Fermi level, ��kz2k�, in a logarithmic plot vs momentum-space angle � for �a� s-wave, �b�
extended s-wave, and ��c� and �d�� dx2−y2-wave hybridization. Parameters are as in Figs. 2�a�–2�d�. In all four cases, the “total” effective mass
�as derived from the specific heat� is around 125 times the bare electron mass.

FIG. 5. As in Fig. 4, but now showing the quasiparticle weight Z in a logarithmic plot vs angle �.
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will cause a spin splitting of the Fermi surface, with spin-
and field-dependent effective masses �or densities of states
N��B��.26 The qualitative field dependence, N��B�=N0�1
+�B /B0� with B0 proportional to the Kondo temperature, is
not changed by a momentum dependence of Vk. �The field
dependence of the mean-field parameters leads to a sublead-
ing correction �B2 to N��B�.26� The anisotropy of Vk, of
course, causes an anisotropy of the k-space distance between
the spin-split Fermi sheets, as the Fermi velocity is highly
anisotropic.

For magneto-oscillation measurements, the cyclotron
mass is an important quantity, given by 2�mc=�A�E� /�E,
where A�E� is the area enclosed by the quasiparticle isoen-
ergy curve in a momentum-space plane perpendicular to the
applied orbital field. Thus, in dimensions d�2, the cyclotron
mass mc depends on the field direction. However, in two
dimensions, this dependence is absent, and mc is identical to
the �averaged� quasiparticle mass m* extracted from the den-
sity of states or specific heat, independent of momentum-
space anisotropies.

D. Optical conductivity

The optical response of heavy-fermion metals has been
studied extensively.8 Experiments probing the optical con-
ductivity ��� usually show a Drude peak well separated
from midinfrared excitations. These features have been inter-
preted in the two-band picture advocated above. While intra-
band particle-hole excitations produce conventional metallic
Drude-like response, interband excitations lead to finite
weight at elevated energies. In a picture of free fermions, the
threshold energy of these optical interband excitations mea-
sures the minimum gap between occupied and unoccupied
states in the lower and upper bands, respectively. For
momentum-independent hybridization between c and f
bands, this optical gap �opt is simply given by twice the
value of the renormalized hybridization. As explained above,
the hybridization is expected to scale as the square root of
the coherence temperature; hence, �opt��TcohD �where D is
the conduction-electron bandwidth�. Clearly, the simple two-
band picture falls short of capturing inelastic processes at
nonzero energies, which will inevitably smear out the gap
even at T=0. Nevertheless, a pseudogaplike feature has been
shown to survive in ��� when fully accounting for dynamic
local correlation effects in the framework of DMFT for the
standard Anderson lattice model at large U.21,27 In the results
of these calculations, the magnitude of the pseudogap has the
same scaling as above, �opt��Tcoh. Remarkably, this rela-
tion between optical gap and coherence temperature has been
found to be nicely obeyed by a number of heavy-fermion
metals.8–12 However, optical-conductivity studies in CeMIn5
�M =Ir, Rh, or Co� show little signatures of a well-defined
hybridization gap.7 As we show below, such a behavior is, in
principle, consistent with a strongly momentum-dependent
hybridization in the underlying Anderson lattice model.

The finite-frequency part of the optical conductivity ���
can be expressed through the retarded current-current corre-
lation function as

��� =
i


�� + i�� , �23�

with

��i� = − �
0

�

d�ei�	T� j†���j�0�
 . �24�

The current operator j has to be calculated as the time de-
rivative of the polarization operator P,

j = i�H,P� , �25�

where the definition of P includes all charged particles ai
�with charge qi�,

P = �
i�

qiRiai
†ai. �26�

As usual, approximations to the propagators and to the cur-
rent vertex in calculating ��� have to be mutually consis-
tent in order to respect charge conservation �expressed by the
corresponding Ward identity�.

At this point, the electrodynamics of the heavy Fermi liq-
uid requires a thorough discussion. Physically, the f electrons
contribute to the Fermi surface and carry charge. While this
is plausible in the Anderson model picture, where the charge

is naturally carried by the f̄ auxiliary particles, the Kondo

case is more subtle. The f̃ particles of the mean-field theory
are neutral spinons, which will carry a physical electric
charge only upon inclusion of gauge fluctuations, see Sec. V.
Hence, we shall take the Anderson model viewpoint here. In
the spirit of the mean-field theory, we demand the current
correlator to be calculated as the bare bubble. An expression
for the current vertex, which is consistent with the mean-
field propagators, is obtained from

jMF = i�HALM,MF,PMF� , �27�

where charge-carrying particles ci and f̄ i are contained in
PMF,

PMF = �
i�

Ri�ci�
† ci� + f̄ i�

† f̄ i�� . �28�

Evaluating Eq. �27� leads to

jMF = �
k�

���k�k�ck�
† ck� + r��kVk��ck�

† f̄k� + H.c.�� .

�29�

Let us pause to emphasize that a current operator derived
from HALM before the mean-field approximation would have
an f-electron contribution different from that in jMF, but such
a current vertex would be inconsistent when used together
with the bubble of mean-field propagators, i.e., vertex cor-
rections would become important. We point out that jMF has

several shortcomings because PMF treats f̄ as real electrons;
nevertheless, expression �29� is the only current operator
suitable within the mean-field treatment of the Anderson
model. We also note that the second term in jMF vanishes in
the conventional case of a constant hybridization Vk, and
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ambiguities regarding the treatment of the f electrons do not
arise.21,28

Using the current operator jMF �Eq. �29��, the expression
for the real part of the optical conductivity �1 �still assuming
nc	1� reads

�1�� =
�


�
k

nF�z2k�
�z1k − z2k�2Ak��z1k − z2k − � , �30�

using the abbreviations �̃ f =� f −� and

Ak = ��k�k�2�z2k − �̃ f��z1k − �̃ f� + r2��kVk�2��z1k − z2k�

+ 4r2Vk
2� + 2r2Vk ��k �Vk�z2k + z1k − 2�̃ f� . �31�

The result for ���0� from a numerical evaluation of
Eq. �30� is depicted in Fig. 6, for the three hybridization
symmetries of Eq. �15� and parameters as in Figs. 2�a�–2�c�.
In all situations, a finite gap �opt is visible in ���, which
corresponds to the minimal direct gap between the two bands
z1k and z2k. In the cases of the s-wave and the extended
s-wave hybridization, �opt is given by 2b and ��0
−��b /�b2+ t2, respectively; both expressions translate into
�opt��TcohD �up to prefactors�, as known before. For
dx2−y2-wave hybridization, the two bands cross along the
nodal lines, but this crossing is at a finite energy away from
the Fermi level. Hence, the direct gap is finite and given by
the renormalized f level position, ��0�—this translates into
�opt�Tcoh. Above this threshold energy, the optical conduc-
tivity follows �−�opt, see Appendix C.

As discussed above, a hard gap in ��� will not survive
beyond mean field, but we expect the qualitative result to
remain valid. We therefore conclude that a hybridization Vk
with momentum-space nodes leads to transfer of optical
spectral weight from the energy scale �TcohD to the scale
Tcoh �when compared to the case of constant hybridization�.
For actual experiments, this likely implies that no hybridiza-
tion gap will be visible in the optical conductivity, due to the
finite width of the Drude peak. Such a scenario is qualita-
tively consistent with the optical-conductivity data obtained
on CeMIn5.7

E. Thermal transport

Low-temperature dc transport quantities are, in principle,
candidates to probe strong anisotropies in momentum space.
As an example, let us consider the thermal conductivity
�which sometimes shows less sample dependence than the
electrical conductivity�. The energy current operator in the
mean-field approximation reads14

jT = �
k�

�z1k��kz1k��1k
† �1k + �1 ↔ 2�� , �32�

where �1,2
† are the operators creating a quasiparticle in the

z1,2 band. From the Kubo formula, one derives the low-
temperature thermal conductivity in relaxation-time approxi-
mation,

�ij =
1

T
�
k�

z2k
2 ��kz2k�i��kz2k� j�− nF��z2k��

1

��z2k�
, �33�

where � denotes the impurity-induced quasiparticle scatter-
ing rate, and we have again assumed that only the band z2k
crosses the Fermi level.

As already discussed by Moreno and Coleman14 in the
context of gap-anisotropic Kondo insulators, the thermal
conductivity will be strongly anisotropic for three-
dimensional systems where the hybridization has, e.g., line
nodes. In contrast, in the 2D case of a dx2−y2 hybridization,
the conductivity tensor does not have enough degrees of
freedom to reflect the anisotropy, as the two principal axes
are equivalent here. �The sign of �k does not enter.� The
same applies to hybridization functions Vk with higher angu-
lar momenta l. Hence, for 2D anisotropic systems, higher-
order correlation functions need to be considered, as e.g.,
probed by angle-dependent magnetoresistance; this is be-
yond the scope of this paper. �An exception is a p-wave
hybridization �i.e., l=1�, which explicitly breaks the C4 rota-
tion symmetry down to C2, leading to an in-plane transport
anisotropy. Note that such a hybridization will be accompa-
nied by a corresponding lattice distortion, which will be re-
flected in the entire band structure.�

Finally, we note that, independent of possible transport
anisotropies, the Wiedemann–Franz law will always be
obeyed �assuming elastic scattering only�: The Lorenz num-
ber L, formed from the thermal conductivity �ii and the elec-
trical conductivity �ii via L=� / ��T�, will approach the con-
stant L0= ��2 /3��kB /e�2 in the low-temperature limit. This is
consistent with the fact that we are describing a Fermi liquid.
As a corollary, the recently observed violation of the
Wiedemann–Franz law in CeCoIn5 at its field-induced criti-
cal point29 is likely related to inelastic scattering processes.

V. BEYOND MEAN-FIELD THEORY

So far, we have discussed the low-temperature properties
of “unconventional” heavy Fermi liquids using slave-boson
mean-field theory. In principle, corrections to mean-field
theory can be systematically taken into account, by consid-
ering fluctuations around the saddle point. For the Kondo
model, the correct implementation of the Hilbert space con-
straint, together with phase fluctuations of the boson field,

0
0

Ω

Σ1

a�
b�

c�

FIG. 6. �Color online� Real part of the optical conductivity
�1�� for �a� s-wave �solid�, �b� extended s-wave �dotted�, and �c�
dx2−y2-wave hybridization �dashed�. The parameters are as in Figs.
2�a�–2�c�, for a discussion, see text.
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leads to a theory where f̃ and b particles are minimally
coupled to a compact U�1� gauge field. The Fermi-liquid
phase corresponds to the Higgs/confining phase of the gauge
theory; it is stable with respect to fluctuation effects, their

main effect being to endow the f̃ particle with a physical
electric charge.30,31

To treat the full crossover from energies or temperatures
above TK to those below Tcoh, different methods need to be
employed. Local correlations can be efficiently captured by
DMFT.20 If DMFT is formulated for the Anderson lattice
model �Eq. �1��, correlation effects arise from the local Hub-
bard interaction U and, consequently, DMFT can be used to
treat an Anderson model with nonlocal hybridization Vk as
well. The DMFT self-consistency equation then reads

GALM,loc�z� = �
k

1

z − � f − � f�z� −
Vk

2

z − �̄k

=
1

z − � f − �̃�z� − � f�z�
= GSIAM�z� . �34�

Here, � f is the so-called interaction self-energy arising from

U, and �̃ denotes the effective hybridization function defined
by the second line of Eq. �34�. While we shall not numeri-
cally solve the DMFT problem �Eq. �34�� here, we can
briefly discuss a few properties. Most importantly, the mo-
mentum dependence of the arising effective hybridization is
dictated by the bare Vk. This implies that all qualitative state-
ments in Sec. IV remain valid, in particular, all local mo-
ments will be fully screened at low T. �Technically, the
DMFT reduces the lattice model �Eq. �1�� to an effective
single-impurity model, with a bath having a finite density of
states at the Fermi level—this implies a fully developed
Kondo effect as T→0.�

Cluster extensions of DMFT allow us to handle
momentum-dependent self-energies. Then, in principle, the
momentum dependence of the effective hybridization will
differ from that of the bare Vk. However, we do not expect
qualitative changes of the low-temperature physics described
above.

Let us note one caveat: While calculating thermodynam-
ics and single-particle properties within DMFT for the
Anderson model �Eq. �1�� is straightforward, electric trans-
port is not. The reason is that the current operator inevitably
involves contributions from the nonlocal hybridization, see
discussion in Sec. IV D. As a result, vertex corrections do
not vanish in the DMFT limit, in contrast to standard DMFT
applications.20

VI. TEMPERATURE-DEPENDENT RESISTIVITY

In this section, we touch upon electronic properties at
elevated temperatures. In particular, we want to focus on the
electrical resistivity ��T� of heavy fermions with unconven-
tional hybridization for T�TK.

In the conventional heavy-fermion picture, the electrical
resistivity ��T� at high temperatures, T
TK, is small �ignor-

ing phonons here�, and ��T� rises upon lowering the tem-
perature due to increasing magnetic scattering. At a scale
which is often identified with the lattice coherence tempera-
ture Tcoh, ��T� reaches a maximum and then drops upon fur-
ther cooling, behaving as ��T�=�0+AT2 at low T. At el-
evated temperatures, T�TK, the scattering can be accessed
using perturbation theory in the Kondo coupling, i.e., the
physical picture is that of c electrons �with a small Fermi
surface� scattering inelastically off the f moments.

Bare perturbation theory gives a single-particle scattering
rate

�k
−1 � J0

2�k
2�1 +

J0

D
ln

D

T
� . �35�

A few remarks are in order. �i� In the paramagnetic phase of
a Kondo lattice, all contributions to the conduction-electron
self-energy up to order J0

3 arise from single-impurity scatter-
ing. �ii� The prefactor �k

2 comes from the two external lines
of the self-energy diagrams, whereas the internal momentum
summations average out all other form factors—this is also
true for higher-order diagrams. Assuming that scattering
arises from the local moments only, the simplest approxima-
tion for the conductivity ��1 /� yields

�ij�T� � �
FS

dd−1k

�2��dvi�k�v j�k��k, �36�

where vi�k�=d�k /dki is the quasiparticle velocity. The result
�Eqs. �35� and �36�� is interesting, as it shows that for form
factors �k with nodes, the Kondo scattering is insufficient to
render the conductivity finite because �k diverges at least like
�k−kn�−2 near the node at kn. The physical origin is that
conduction electrons with momenta at the hybridization
nodes are not scattered at all, and this short circuits all other
processes, leading to infinite conductivity. To obtain a finite
conductivity, additional scattering needs to be considered,
namely, electron-electron scattering among the conduction
electrons, electron-lattice scattering, or scattering off static
impurities. The resulting interplay of scattering mechanisms
can be complex and can even modify the basic temperature
dependence of ��T�, but we shall not analyze it here in detail.

The physical conclusion is that the electrical current, at
least in the temperature regime T�TK, is primarily carried
by conduction electrons with weak hybridization to the f
moments; hence, “nodal” quasiparticles dominate the electric
transport. Recall that, in contrast, the low-temperature ther-
modynamics is dominated by “antinodal” quasiparticles.

VII. COMPETITION BETWEEN KONDO SCREENING
AND ORDERING

As already discussed by Doniach,32 the phase diagram of
heavy-fermion metals is determined by the competition be-
tween Kondo effect and intermoment exchange �either of
direct or Ruderman–Kittel–Kasuya–Yoshida �RKKY� type�.
Intermoment exchange can drive magnetic ordering but may
also lead to nontrivial metallic spin-liquid states and to mag-
netically mediated superconductivity. The competition with
Kondo screening may be simply understood by stating that
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the local f moments can either form Kondo singlets with the
conduction electrons or they can order in a symmetry-
breaking fashion or else pair into intermoment singlets.

Thinking about these competing tendencies in momentum
space, it is conceivable that, in a situation with momentum-
space differentiation of electronic band properties, certain
ordering phenomena are favored or disfavored by a given
form of the hybridization. This idea will be illustrated in this
section, using magnetically mediated superconductivity as an
example, where one can expect an intricate interplay be-
tween hybridization and pairing symmetries. Concrete calcu-
lations will be performed for a Kondo–Heisenberg model in
a mean-field approach. As in Ref. 33, a magnetic interaction
between the f moments can be decoupled in the particle-
particle channel, leading to pairing of spinons, which, if co-
existing with Kondo screening, leads to BCS-type supercon-
ductivity.

A. Kondo–Heisenberg model

The Anderson and Kondo lattice models �Eqs. �1� and �2��
contain the competition of Kondo and RKKY interactions.
However, in the slave-boson approach, the effect of the
RKKY interaction is lost. For mean-field calculations, it is
thus convenient to introduce an explicit intermoment ex-
change interaction of Heisenberg type,

HH = �
ij

JH,ij

2
Si · S j . �37�

The physics of the model HKLM+HH, commonly referred
to as the Kondo–Heisenberg model, has been extensively
discussed in the literature. We shall give a comprehensive
discussion of all phases and phase diagrams but instead con-
centrate on the possible emergence of superconductivity due
to f-electron pairing. A general framework has been laid out
in Refs. 33 and 34, which considered a scenario where domi-
nant RKKY interaction does not lead to antiferromagnetism
but instead to a metallic spin-liquid state. This state, arising,
e.g., from geometric frustration of the intermoment ex-
change, has been dubbed “fractionalized Fermi liquid”
�FL*�, as it features light conduction electrons, forming a
Fermi liquid, which coexist with a fractionalized spin liquid
formed out of the f electrons. Then, in the generalized Doni-
ach phase diagram, the heavy Fermi liquid �FL� is separated
from FL* by a quantum critical point where Kondo screening
breaks down, but no local symmetries are broken.33,34 �This
quantum critical point has been discussed in relation to un-
conventional quantum criticality in materials such as
CeCu6−xAux and YbRh2Si2.�

A specific realization of FL* is a state with paired spinons
and an emergent Z2 gauge structure. As detailed in Ref. 33,
one can expect magnetically mediated superconductivity
close to the quantum critical point between FL and a Z2 FL*.
All resulting low-temperature phases can be conveniently de-
scribed in a mean-field approach, where the standard slave-
boson description of the Kondo effect is combined with a
Sp�2N� mean-field treatment of the Heisenberg exchange.35

Below, we shall extend this mean-field theory to the case of
momentum-dependent hybridization.

B. Mean-field theory and magnetically mediated
superconductivity

A mean-field theory for the Kondo–Heisenberg model,
HKLM+HH, involves a decoupling of the Kondo interaction
as in Sec. III and of the intermoment Heisenberg exchange
HH. Using the pseudofermion representation of the local mo-
ments as above, nonlocal spinon pairing is described by a

mean field of the form �ij =−	 f̃ i↑ f̃ j↓− f̃ i↓ f̃ j↑
. Then, the
Heisenberg interaction can be written at the mean-field level
as36

HH,MF = − �
ij

JH,ij

4
��2�ij f̃ i↑

† f̃ j↓
† + H.c.� − ��ij�2� . �38�

For time-reversal invariant states, the bond field �ij =� ji can
be chosen to be real. Importantly, the mean-field Hamiltonian
�Eq. �38�� is the exact solution of the Heisenberg model in
the symplectic Sp�2N� large-N limit, with a fully antisym-
metric representation of the local moments.35 �This large-N
limit uniquely selects the particle-particle decoupling of the
Heisenberg interaction.36� Physicswise, nonzero �ij creates a
paramagnetic phase out of the f moments; in particular, uni-
form �ij describes a gapped Z2 spin liquid but also states
with broken translational symmetry can occur which can be
classified as valence-bond solids.38 A consistent Sp�2N�
mean-field treatment of the full model HKLM+HH is ob-
tained by also decoupling the Kondo interaction in the
particle-particle channel. However, one can show that for the
Kondo part, both particle-hole and particle-particle decou-
pling schemes are equivalent regarding physical observables,
provided that nf =1 and time-reversal symmetry is present.

The full mean-field theory is now given by HKLM,MF
+HH,MF, with the two “order parameters” b and �. Restrict-
ing ourselves to states without translational symmetry break-
ing, the following mean-field phases occur. At high tempera-
tures, a trivial decoupled phase with b=�=0 is realized. If
the Heisenberg exchange JH dominates over the Kondo cou-
pling J0, then � will be finite, and b zero at low T, resulting
in decoupled c- and f-electron subsystems. This is the FL*

phase described above. On the other hand, nonzero b and
vanishing � describe a conventional heavy FL �which was
the subject of Sec. III�. Finally, if both � and b are nonzero,
Kondo screening coexists with spinon pairing, which leads to
a true superconducting �SC� state, with pairing mediated by
the magnetic coupling among the f moments. At sufficiently
low T, the FL phase is always unstable toward superconduc-
tivity in the presence of a nonzero JH. �Note that the FL*

phase is not a superconductor, as the f̃ particles do not carry
a physical charge in the absence of Kondo screening.� Fluc-
tuation corrections to mean-field theory will smear out the
finite-temperature transitions of the FL and FL* phases �the
latter only in d=2 dimensions�, whereas the superconducting
transition remains a true phase transition.33

At this point, a more detailed discussion of the spatial
structure of the Heisenberg interaction, described by JH,ij,
and of the resulting pairing is needed. For nearest-neighbor
exchange on the square lattice of f moments, each unit cell
contains two bond variables, �ij. A numerical solution shows
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that two types of saddle points exist �provided that transla-
tional and time-reversal invariances are imposed38�, namely,
a uniform �or “extended s-wave”� solution with �ij =� on all
links and a “dx2−y2-wave” solution with �ij = �� on horizon-
tal and vertical links, respectively. We will also consider the
case where JH,ij only act on next-neighbor diagonal bonds,
which together with an alternating structure of the �ij leads
to a “dxy-wave” mean-field solution of the Heisenberg part.
All cases can be written in momentum space as

HH,MF = �
k

W̃k� f̃k↑
† f̃−k↓

† + H.c.� + JHN�2, �39�

with the abbreviation W̃k=−JH��k, and �k contains the
“form factor” of the spinon pairing,

�k = cos kx + cos ky extended s wave

cos kx − cos ky dx2−y2 wave

2 sin kx sin ky dxy wave.
� �40�

The self-consistency equation which supplements the
Hamiltonian HKLM,MF+HH,MF is given by Eqs. �12a�–�12c�
and

�
k

�k	 f̃k↑
† f̃−k↓

† + H.c.
 = 2N� . �41�

All expectation values can again be expressed in terms of
Green functions, see Appendix A 2. Diagonalizing the mean-
field Hamiltonian, we obtain the quasiparticle energies

z̄1,2,3,4k = �
1
�2

��0
2 + �̄k

2 + 2b2�k
2 + W̃k

2 � �− 4��0�̄k + b2�k
2�2

− 4�̄k
2W̃k

2 + ��0
2 + �̄k

2 + 2b2�k
2 + W̃k

2�2�1/2�1/2. �42�

Let us point out an interesting feature of the SC state. Due
to the momentum-dependent hybridization, the internal
structure of the Cooper pairs is highly nontrivial. In particu-
lar, the anomalous expectation value of the physical electrons
is given by 	ck↑

† c−k↓
† 
���k

2�kMk, where Mk is a smooth
function respecting the lattice symmetries �see Appendix A
2�. This transforms under the same representation of the

space group as the 	 f̃k↑
† f̃−k↓

† 
���k of the spinons but has
additional zeros from �k

2. �A somewhat similar situation ap-
pears in the composite pairing picture of Ref. 37, however,
there arising from two-channel Kondo physics.� The addi-
tional zeros will have a strong influence on thermodynamics,
e.g., the power law in the low-temperature specific heat will
be modified.

C. Qualitative discussion: Tc™TK versus TcÈTK

Pairing in a Kondo lattice system can occur in qualita-
tively different regimes, depending on the relation between
the superconducting Tc and the characteristic Kondo scale. If
Tc�TK, then the proper picture is that of BCS-like pairing
out of a well-formed heavy Fermi liquid. In contrast, Tc
�TK implies a strong competition of Kondo screening and
Cooper pairing, and superconductivity emerges out of an in-
coherent non-Fermi-liquid regime. �The formal situation Tc


TK leads to the nonsuperconducting FL* phase.�
Let us quickly discuss the two regimes in the framework

of the mean-field theory, keeping in mind that inelastic pro-
cesses at energies of order TK will not be captured. The
mean-field equation �Eq. �41�� reduces to an equation for Tc
if we set � to zero,

2

JH
=

1

N�
k

�k
2� z1k

2 − �̄k
2

z1k
2 − z2k

2

1

z1k
tanh

z1k

2Tc
+ �1 ↔ 2�� . �43�

The factor �k
2 originates from the fact that the momentum

dependencies of both the gap and the pairing interaction W̃k
are equal by construction.

In the regime Tc�TK, only the quasiparticle band cross-
ing the Fermi level �which we again assume to be z2k� con-
tributes to pairing. We replace the k summation by an inte-
gral over isoenergetic lines �d�=z2k

dAk / ��z2k�. In analogy
to the standard BCS case we approximate tanh� /2Tc�=1
for �2Tc and 0 elsewhere. The factor of �k

2 will be taken
at its value at the Fermi surface. Furthermore, we will set
����̄k

2 −z2k
2 � / �z1k

2 −z2k
2 ��const, assuming that it is weakly

varying along the Fermi surface. Neglecting the dependen-
cies of the velocity and �k perpendicular to the Fermi sur-
face, we obtain

2

JH
= �

2Tc

� d


�

FS

dAk

2�

��k
2

��kz2k�
, �44�

with � of order the bandwidth. This gives a rough Tc esti-
mate of

Tc =
�

2
exp�−

4�

JH��dAk��k
2/��z2k��� . �45�

This equation shows the direct interplay of the form factors:
Tc is enhanced if the pairing is strong �large �k� in regions
where quasiparticles are heavy and hence have large f char-
acter. In other words, antinodal regions along the Fermi sur-
face with large hybridization are more susceptible to pairing.

In contrast, in the regime of Tc�TK, both bands contrib-
ute to pairing, and one can expect large contributions to the
integral in Eq. �43� from the essentially flat parts of both
bands z1,2k, which are present, in particular, close to the
nodal lines of the hybridization Vk. This simple argument
illustrates the competition between Kondo effect and pairing
in the regime Tc�TK. Nodal momentum-space regions with
less hybridization are more susceptible to pairing—this is
opposite to the statement made above for Tc�TK. One
should, however, keep in mind that the mean-field theory has
limited relevance for the true physics at energies or tempera-
tures of order TK, the key point being that electrons in the
antinodal regions are rather incoherent. The emerging prob-
lem of the pairing of incoherent fermions is of fundamental
relevance and heavily debated, for instance, in the field of
high-temperature superconductors but rather little solid
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knowledge exists about this highly interesting strong-
coupling phenomenon.

D. Extended phase diagrams

The discussion of the last section suggests that a certain
hybridization symmetry can favor or disfavor a certain pair-
ing symmetry. To follow up on this idea, we have determined
mean-field phase diagrams from a fully self-consistent nu-
merical solution of Eqs. �12� and �41�. While our results, in
principle, support the above statement, they also show that
microscopic details of band structure, band filling, and pair-
ing interaction are important in determining Tc �which may
render simplistic arguments invalid�.

Sample phase diagrams as a function of temperature T
and Kondo coupling J0, keeping JH, t, and nc fixed, are
shown in Fig. 7, for hybridizations of extended s- and
dx2−y2-type and various pairing symmetries. The overall
structure of the phase diagram was discussed above in Sec.
VII B and is identical to that described in Ref. 33.

The different pairing symmetries in Fig. 7 have to be un-
derstood as follows. For a given Heisenberg interaction,
saddle points with different spinon pairing symmetry occur,
and to plot the phase diagrams, we have restricted our atten-
tion by hand to one of the saddle points. The correct super-
conducting phase is obtained by comparing the free energies,
given by the mean-field expression

F = −
1

�
�
k,i

ln�1 + e−�z̄ik� + �
k

��k − �0� + N�nc + N�0

+ NJH�2 + Nb2

J0

. �46�

Plots of the free energies at low T are presented in Fig. 8.
The rough conclusion for the particular dispersion and

band filling used here is that extended s-wave hybridization
favors the dx2−y2-wave superconducting symmetry, while
dx2−y2-wave hybridization favors dxy-wave superconductivity.
Given the structure of the Fermi surfaces in the FL phase,
this is not unexpected. If both �k and �k have an extended s
structure, the pairing interaction is rather small near the
Fermi surface �Fig. 2�b�� and, consequently, the supercon-
ductivity is weak in the left panel of Fig. 7�b�, whereas both
d-wave pairing states perform nicely in energy. For �k of
dx2−y2 form, the Fermi surface �Fig. 2�c�� is mainly located
close to the momentum-space diagonals, favoring dxy pairing
�right panel of Fig. 7�c��.

VIII. CONCLUSIONS

In this paper, we have explored the consequences of a
strongly momentum-dependent hybridization between con-
duction and local-moment electrons in heavy-fermion met-
als. In the Fermi-liquid regime, the quasiparticle properties
become strongly anisotropic along the Fermi surface:
“nodal” quasiparticles are light c electrons, whereas “antin-
odal” quasiparticles are heavy and have essentially f charac-
ter. An interesting dichotomy arises: while the low-
temperature thermodynamics is dominated by heavy
antinodal quasiparticles, the electrical conductivity at el-
evated temperatures is carried by unhybridized nodal quasi-
particles. Experimentally important is the low-temperature
optical conductivity ���. Due to the strongly momentum-
dependent gap between the effective bands, the hybridization
gap in ��� is essentially smeared out.

Further, we have advocated the idea that the momentum-
space structure of the hybridization is important in selecting
ordering phenomena which compete with Kondo screening
near quantum criticality. Here, two regimes need to be dis-
tinguished. For energies or temperatures T much smaller than
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FIG. 7. Phase diagrams in dependence of temperature T and
Kondo coupling J0 at nc=0.3 for an extended s- and a dx2−y2-wave
hybridization, combined with different types of a superconducting
symmetry: �a� dx2−y2 wave, �b� extended s wave, and �c� dxy wave.
The left-panel insets show the real-space structure of spinon pairing
fields �ij, leading to the certain type of pairing symmetry. Thick
�thin� lines refer to first- �second-�order phase transitions; for fur-
ther details, see text.
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FIG. 8. �Color online� Free energy plotted against the Kondo
coupling J0 at nc=0.3 and T=10−5 for extended s-wave hybridiza-
tion �left� and dx2−y2-wave hybridization �right� and different super-
conducting symmetries: �a� dx2−y2 wave, �b� extended s wave, and
�c� dxy wave �compare to the corresponding phase diagrams shown
in Fig. 7�. The thin dashed line shows the normal-state solution with
�=0.
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the coherence temperature Tcoh, a weak-coupling quasiparti-
cle picture is often appropriate, and instabilities of the heavy
Fermi liquid are determined by the interaction among the
�anisotropic� quasiparticles. In contrast, for T�Tcoh, fasci-
nating strong-coupling phenomena can be expected, for ex-
ample, unconventional superconductivity emerging from a
non-Fermi liquid regime. This physics will be dominated by
inelastic processes, which again are strongly anisotropic in
momentum space. A detailed study should be undertaken us-
ing cluster extensions of dynamical mean-field theory but is
beyond the scope of this paper.

On the experimental side, CeNiSn and CeRhSb have been
established to be half-filled Kondo semimetals with a hybrid-
ization gap vanishing along a certain crystallographic
axis.13,14,39 The CeMIn5 compounds are candidates for
Kondo metals with strongly anisotropic hybridization,7 but
other Ce or Yb materials where a clear-cut hybridization gap
in ��� is absent may fall into this category as well. We note
that first-principles calculations based on density-functional
theory could, in principle, be able to determine the hybrid-
ization symmetry, but strong interaction effects can render
the conclusions invalid. Recent x-ray absorption studies are
promising in paving a way to an experimental determination
of the required microscopic information.40 To probe the an-
isotropic quasiparticle properties in the Kondo regime, high-
resolution angle-resolved photoemission is the ideal tool
�with the restriction that it can only be applied to quasi-2D
systems�. As outlined in Sec. VI, unusual behavior in the
finite-temperature resistivity may also be connected to nodes
in the hybridization function. Clearly, more detailed theoret-
ical investigations of transport properties are needed. Finally,
we mention that the strong-coupling pairing regime Tc�TK
is very likely realized in the fascinating superconductor
PuCoGa5.41

Notes added. While this paper was being completed, a
related paper by Ghaemi et al.42 on angle-dependent quasi-
particle weights appeared. Their results for the low-
temperature regime of anisotropic heavy Fermi liquids are
related to ours. After submission of this paper, Shim et al.43

published a paper on first-principles calculations for CeIrIn5,
which support the idea of a strongly momentum-dependent
hybridization function.
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APPENDIX A: MEAN-FIELD THEORY

In this appendix, we list the expressions of Green func-
tions required for the implementation of the mean-field
theory.

1. Green functions

The Kondo lattice mean-field Hamiltonian can be rewrit-
ten in a matrix form

HKLM = �
k�

�k
†� �̄k b�k

b�k − �0
�

Ĥk

�k + const,

�A1�

with �k= �ck� , f̃k��T. In the following, we shall denote re-
tarded Green functions

ĜAB�z� = �
0

�

dt eizt�− i��t�	�Â�t�,B̂�0��+
� , �A2�

as 		Â ; B̂

z. Defining the matrix propagator

Ĝ�k,z� = 		�̂k
† ;�̂k

 = �z − Ĥk�−1, �A3�

we obtain by explicit inversion,

Ĝ�k,z� = �		ck�
† ;ck�

z 		ck�

† ; f̃k�

z

		 f̃k�
† ;ck�

z 		 f̃k�

† ; f̃k�

z

�
=

1

�z − z1k��z − z2k�
�z + �0 b�k

b�k z − �̄k
� . �A4�

The thermal expectation values required for the mean-field
equation are obtained by summing over Matsubara frequen-
cies; this can be done analytically, as the excitation energies
�Eq. �17�� are known.

2. Green functions in the presence of a Heisenberg term

The Hamiltonian containing the additional Heisenberg
term �Eq. �39�� has to be rewritten in a matrix form in anal-

ogy to Appendix A 1. The inversion of �z− Ĥk� provides the
needed Green functions. We use the shorthand h�z�=�i�z
− z̄i�.

		 f̃ k↑
† ; f̃k↑

z =

�z − �̄k���z − �0��z + �̄k� − b2�k
2�

h�z�
, �A5a�

		 f̃−k↓; f̃ −k↓
† 

z =

�z + �̄k���z + �0��z − �̄k� − b2�k
2�

h�z�
, �A5b�

		 f̃ k↑
† ; f̃−k↓

† 

z = 		 f̃−k↓; f̃ k↑

z =
W̃k�z2 − �̄k

2�
h�z�

, �A5c�

		ck↑
† ;c−k↓

† 

z = 		c−k↓;ck↑

z = −
W̃kb2�k

2

h�z�
, �A5d�

		ck↑
† ; f̃k↑

z = 		 f̃ k↑

† ;ck↑

z

=
b�k��z − �0��z + �̄k� − b2�k

2�
h�z�

, �A5e�

		 f̃−k↓;c−k↓
† 

z = 		c−k↓; f̃ −k↓

† 

z

=
− b�k��z + �0��z − �̄k� − b2�k

2�
h�z�

, �A5f�
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		ck↑
† ;ck↑

z =

− b2�k
2�z + �0� + �z + �̄k��z2 − W̃k

2 − �0
2�

h�z�
,

�A5g�

		c−k↓;c−k↓
† 

z =

− b2�k
2�z − �0� + �z − �̄k��z2 − W̃k

2 − �0
2�

h�z�
.

�A5h�

APPENDIX B: EQUIVALENCE OF ANDERSON AND
KONDO MEAN-FIELD THEORIES

Here, we compare the two sets of mean-field equations for
the Anderson and Kondo lattice models �Eqs. �8� and �12��.
These are expected to be equivalent, once the Kondo limit is
taken in the Anderson model equations. For U→�, the
Kondo coupling is J0=V2 / �� f�. Further, the Kondo limit im-
plies r→0, for otherwise the effective hybridization would

diverge. The average f̄ occupation then becomes unity, and

the f̄ and f̃ operators are equivalent. The physical valence
fluctuations in the Anderson model are projected out by

� f →−�. In this limit, the effective f̄ level energy �� f −��
stays finite �i.e., a fraction of the bandwidth� to ensure

��	 f̄�
† f̄�
=1. Therefore, V2 / ���→J0.

With this knowledge about the limiting behaviors, the first
of the Anderson model mean-field equations �Eq. �8a�� trans-
forms like

rV =
1

2N��
k�

V2�k

�
� f̄k�

† ck� + ck�
† f̄k���

→ −
J0

2N��
k�

�k� f̃k�
† ck� + ck�

† f̃k��� = b . �B1�

We can see that the mean-field equations of both theories

correspond to each other, and rV and b are the effective band
hybridizations in the two-band model.

APPENDIX C: OPTICAL CONDUCTIVITY

We briefly discuss the behavior of the interband optical
conductivity close to the threshold energy, for the case of
d-wave hybridization. In Eq. �30�, the matrix elements are
nonsingular near the threshold; hence, we only need to ana-
lyze the behavior of

�C1�

A change of variables is

k̃x =
1
�2

�kx + ky − 2k0� , �C2a�

k̃y =
1
�2

�− kx + ky� , �C2b�

where k0 is determined by ��k0 ,k0�=0. For  near −�0,

�E�k̃x , k̃y� can be approximated by a second-order Taylor

expansion in k̃x and k̃y around 0. The k integration is re-
stricted to the Fermi sea because of the factor nF�z2k�. The
Fermi surface can be approximated by also expanding

around k̃x, k̃y =0. Power counting in the integral then shows
that the first non-vanishing contribution to the optical con-
ductivity for a d-wave hybridization is ��+�0.
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